
Lesson 12

Christian Schwarz, Jakob Krebs

27.1.2020

Contents

Libraries

Static Libraries

Dynamic Libraries

1

Libraries

Static Libraries

• Compilation is hard, and can take a long time. The compiler needs to do a lot of work to

get from C code to an executable binary.

• When our Project becomes large, or if we are using a lot of existing code, we might not

want to recompile everything every time we build.

• For example: We commonly use the C Standard Library in our programm, but we never

actually change it.

• How can we avoid uneccessary recompilation?

2

Static Libraries

• Remember that compilation involved multiple steps:

1. Preprocessing

2. Compiling

3. (Assembling)

4. Linking

• Steps 1-3 run for every file. The output doesn’t change, unless the C file (or the included

headers) change.

• So should we just link all the .o / .obj files of libc and other dependencies every time?

Doesn’t that get annoying?

• GNU/Linux allows us to bundle multiple .o files into a bundle (think .zip) called an archive

(.a)

• On Windows multiple .obj’s can be bundled into a .LIB file

• We call both .a and .LIB static libraries, since they define a bunch of functions (and global

variables) that we can use in our applications.

3

Creating a Static Library

1 //hello.c

2 #include <stdio.h>

3 void hello_can_you_hear_me(void){

4 puts("Hello from the other side!");

5 }

$ gcc −c h e l l o . c

$ a r r c s l i b h e l l o . a h e l l o . o

• -c makes gcc stop after the compilation step and generate object files instead of an

executable

• the ar utility (with the parameters rcs) creates our archive

• we could have appended multiple files for both programs

• prefixing libraries with "lib" is a typical linux convention

4

Using a Static Library

1 //main.c

2 void hello_can_you_hear_me(void); // forward declaration

3 int main (){

4 hello_can_you_hear_me ();

5 return 0;

6 }

$ gcc main . c t e s t . a

$. / a . out

H e l l o from t he o t h e r s i d e !

$

5

Dynamic Libraries

• In a normal Desktop Operating System, many processes run at the same time.

• For every Process, the OS loads the code inside the executable into main memory.

• If one executable is launched multiple times, the physical memory for the code can be

shared.

• But if all Libraries were statically linked into the executables, commonly used libraries like

libc would end up being stored in RAM many times, creating a lot of redundancy.

• Also, when the Code for a library gets updates (bugfixes, performance improvements,

etc.), all executables (and libraries) depending on that library would need to be recompiled

and redistributed to the users.

• And by the way, how do you create optional modules / plugins?

6

Dynamic Libraries

• Dynamic libraries are completely different from static libraries, in that they get loaded

during runtime of the program.

• The Application specifies the name of the dnymic libraries its wants to use, and during

runtime these symbols get loaded by searching for files with the specied names and

searching the requested symbols in them.

1 #include <dlfcn.h>

2 int main (){

3 void *dl_handle = dlopen ("libm.so", RTLD_LAZY);

4 double (* cosine)(double);

5 cosine = dlsym(dl_handle , "cos");

6 printf ("%f\n", (* cosine)(2.0));

7 dlclose(handle);

8 }

7

Dynamic Libraries

$ gcc −s h a r e d t e s t . c −o l i b t e s t . so

$ gcc main . c −L . − l t e s t

$ e x p o r t LD LIBRARY PATH =./: $LD LIBRARY PATH

$. / a . out

H e l l o from t he o t h e r s i d e !

$

• -shared requests building a shared library

• -L adds a directory to search for libraries (at compile time)

• -l adds a library name to search for (also later used at runtime)

• we must omit the leading "lib" so our library will be found

• LD_LIBRARY_PATH is an environment variable for adding additional directories that are

searched for dynamic libraries (ld is the dynamic linker)

• we must add "." so the current directory is searched
8

Dynamic Libraries Trivia

• another useful variable is LD_PRELOAD , which allows us to preload arbitrary libraries and

therefore symbols for our executable (e.g. used by strace, can have security implications)

• Windows works a bit different here, you have to specify the functions which you want to

export for the dynamic library by prepending __declspec(dllexport) to every

function, and forward declare them them with __declspec(dllimport)

• this is usually done using a macro like DLL_EXPORT in header files which changes

meaning based on pp directives (e.g. expands to nothing on Unix)

• Windows also requires you to link a static wrapper library to your application for all DLLs.

This wrapper .LIB gets automatically created when the DLL is compiled

• On the upside, windows automatically searches for DLLS in the application’s directory

9

	Libraries
	Static Libraries
	Dynamic Libraries

