Lesson 8

Christian Schwarz, Jakob Krebs
15.12.2019



Network Protocols
Socket Programming

Task



Sources and Solutions

e we publish all code written in this course at https://github.com/jkrbs/c_lessons
e we will publish example solutions of the tasks on same site

e send us questions or your solutions to c-lessons@deutschland.gmbh


https://github.com/jkrbs/c_lessons

Network Protocols



Osi Reference Model

Application protocol




Osi Reference Model

Application protocol




Transport Protocols

TCP:

e connection-oriented
e three-way-handshake
e dialog between two sides

e guaranteed data delivery in the same order as sent

UDP:

e connectionless
e faster, since it is " best effort” (no error recovery)

e no guarantee for sent packages to arrive



Socket Programming



Sockets are abstractions for connection endpoints to be used by processes. Both the server and
the client process have a socket which they use to send data to each other.

Sockets are platform-dependend, but the system call interface is similar:

Unix file descriptors (int)
Windows handles for kernel objects (SOCKET)

You will also have to include different headers:

// Unix

#include <sys/socket.h>
// Windows

#include <windows.h>



Create an endpoint for communication.

// Unix

int socket(int domain, int type, int protocol);
//windows

SOCKET socket(int domain, int type, int protocol);

domain Communication domain for the socket
[AF_INET, AF_INET6, os-specific domains]

type Type of the socket
[SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, ...]

protocol The protocol to be used
[0, IPPROTO_TCP, IPPROTO_UDP, ...]

return value File descriptor / socket handle if successful, -1 otherwise



close[socket] ()

Close an existing socket / file descriptor.

//Unix

int close(int fildes);
//windows

int closesocket (SOCKET socket);

fildes/socket File descriptor / handle of the socket to close

return value Exit status (0 = success, -1 = failure)

Do not leak file descriptors!



Connect a socket to another via the network.

// Unix
int connect(int socket, const struct sockaddr xaddress,

socklen_t address_len);
// Windows

int connect(SOCKET socket, const struct sockaddr xaddress,
int address_len);

socket Socket to be connected
address Structure containing target IP address and port
address_len Size of *address in memory

return value Exit status (0 = success, -1 = failure)

UDP sockets don't establish a connection — connect () is optional.



Bind an address to a socket.

// Unix
int bind(int socket, const struct sockaddr xaddress,

socklen_t address_len);
// Windows

int bind (SOCKET socket, const struct sockaddr xaddress,
int address_len);

socket Socket to be bound
address Structure containing IP address and port
address_len Size of *address in memory

return value Exit status (0 = success, -1 = failure)

Naming a socket is necessary for connections from the outside!



Enable listening for connections to a specific socket.

// Unix

int listen(int socket, int backlog);
// Windows
int listen (SOCKET socket, int backlog);

socket Socket to put into listening mode

backlog Hint for an upper bound of the number of outstanding connections in the
listening queue of the socket

return value Exit status (0 = success, -1 = failure)

Calling 1isten() on a socket is necessary to accept incoming TCP connections on a server.

10



Accept a new connection on a socket.
// Unix
int accept(int socket, struct sockaddr xrestrict address,
socklen_t xrestrict address_len);
// Windows
SOCKET accept(SOCKET socket, struct sockaddr xaddress,
int xaddress_len);

socket Listening socket
address Where to store the address of the connecting socket
address_len Size of *address in memory

return value Socket for the new connection on success, invalid descriptor otherwise

By default, accept () blocks if the socket's connection queue is empty!

11



send[to] ()

Send a message on a socket.

// Unix
int send[to](int socket, const void xbuffer, size_t length,
int flags[, const struct sockaddr xdest_addr,
socklen_t dest_len]);

// Windows
int send[to](SOCKET socket, const char xbuffer, int lenght,

int flags[, const struct sockaddr xdest_addr,

int dest_len]);

socket Socket to send from
buffer Pointer to the message to be transmitted
length Length of the message
flags Type of transmission
dest_addr Optional target socket

dest_len Size of *dest_addr in memory 12



recv [from]

Recieve a message on a socket.

// Unix
int recv[from](int socket, const void xbuffer, size_t length,
int flags[, struct sockaddr xrestrict address,
socklen_t *restrict address_len]);
// Windows
int recv[from](SOCKET socket, const char xbuffer, int length,

int flags[, struct sockaddr xaddress,
int xaddress_len]);

socket The connected socket
buffer Pointer where to put the recieved message
length Length of the message buffer
flags Type of transmission
adress Optional sending socket
adress_len Size of *adress in memory
return value #bytes recieved, 0 (connection closed), or -1 (failure)

13



Task




a simple server

let's write a program which listens on port 1337 and prints the send packet payload.
the output should be like this:

1 [sender address]: [message]
2 23.42.23.42: lame course :p

14



send us your name

send us your name on a tcp connection to
dvorak.krbs.me(IPv4 Address: 116.203.113.16) on port 1337

What you send us, will be printed on the the beamer.

have a try. Our program from the last task will run there.

15



	Network Protocols
	

	Socket Programming
	

	Task

