Lesson 7

Christian Schwarz, Jakob Krebs
9.12.2019



Function Pointers
Type Qualifiers
Parallelism
pthreads

Mutual Exclusion



Sources and Solutions

e we publish all code written in this course at https://github.com/jkrbs/c_lessons
e we will publish example solutions of the tasks on same site

e send us questions or your solutions to c-lessons@deutschland.gmbh


https://github.com/jkrbs/c_lessons

Function Pointers



Function Pointers

e As we know, a pointer is really just a memory address

e The code for functions is also in memory, so it also has an address.

e As long as different functions have the same argument types, we can call them using a
function pointer:

1 int foo(int x, int y){ puts("called foo"); 1}
2 <<<<<<< HEAD
3 int foo(int x, int y){ puts("called bar"); }

5 int bar(int x, int y){ puts("called bar"); }

6 >>>>>>> master

7 // func_ptr is the newly created function pointer

8 int (*xfunc_ptr) (int,int);

9 func_ptr = &foo; // we give it foo’s address

10 func_ptr(1,2); // we call foo

11 func_ptr = bar; // the &’ is optional, think arrays



Function Pointer Typedefs

Since the above type declaration is slighly complicated, it's often a good idea to alias the
function type:

// we can give the parameters names but it’s optional
typedef int (*event_callback)(int event_id, void* context);

// now we can initialize a variable like this:
event_callback callback = &my_event_handler;
int result = callback(l, NULL);

S OB W N



Type Qualifiers




const

To give more information about a variable to the compiler, you can
qualify its type.

The most common type qualifier is const . It prevents the qualified variable from being
modified. If you try anyways you will get a compiler error.

// request that x can’t be written to (after initialization)
int comnst x = 3;
x = 3; // error: assignment of read-only variable ’x’

void f(int *a); // forward declaration for f

[ I O S

f(&i); // warning: ’foo’ [...] discards ’const’ qualifier [...]

But this is C we're talking about, so of course there's a way: *(int*)&x = 3;

Compiles no problem. But what happens is undefined behaviour, so your progamm would no
longer be valid.



AW N -

the west-const to the east-const

Normally, a qualifier refers to the type to its left, but the following is also valid (and more

common!):

const int a;
Watch complex types:

const int *foo;
int const *foo;
int * const foo;

int const * const foo;

//

//
//
//
//

equal to ‘int const a‘

mutable pointer, constant integer
same as above
constant pointer, mutable integer

everything constant



volatile prevents the compiler from doing aggressive optimizations on a variable. For
example:

volatile bool interrupt_occured = false;
while (!interrupt_occured){
// we don’t change interrupt_occured, so the compiler

// might assume that it can optimize away the check

G oA w NN

}

This is mainly used in low-level programming:

e Hardware access (memory-mapped |/0)

e Threading (another thread modifies a value) (! be very careful here)



volatile example C

#include <stdio.h> #include <stdio.h>

1
2
int main(void) { 3 int main(void) {
int i = 42; 4 volatile int i = 42;
printf ("%d\n", 1i); 5 printf ("%d\n", i);

6

S B W N



volatile example assembly

After compilation with gcc -O3:

.LCO:
.LCO: . "%d\ n”
.strin n
.string "%d\n" . &7
. main :
main :
b 8 sub rsp, 24
su rs
b mov edi, OFFSET FLAT:.LCO
mov esi, 42
xor eax, eax
di, OFFSET FLAT:.LCO '
mev ! mov DWORD PTR [rsp+12], 42
xor eax, eax .
. mov esi , DWORD PTR [rsp+12]
call printf .
call printf
xor eax, eax
add rsp. 8 xor eax, eax
' add rsp, 24
ret
ret

The compiler could not pass 42 to printf directly once we made i volatile .



© 00 N O G & W N =

=
= O

Restrict guarantees to the compiler that nobody else is writing to the memory of a pointer (the
pointer is not aliased). Therefore the compiler might do an optimization like this:

void f(char *restrict pl, char *restrict p2) {
for (int i = 0; i < 50; i++) {
pll[il 4;
p2[il 9;

}
// optimized version, only valid if pl and p2 don’t overlap
void f(char *restrict pl, char *restrict p2) {

memset (pl, 4, 50);

memset (p2, 9, 50);

Since this is purely an optimization, restrict never changes the output of a valid program. 0



Parallelism




Executing code in parallel

Each program has a process associated with it. At program start, this process has exactly one

thread executing your main function.

To achieve parallelism, you can

e create a new process running the same code

e call a function in a new thread

In Unix systems, processes are created with the fork system call.
The new process will have its own memory to work with.

For starting threads, libraries such as plosix]threads are used.
All threads of a process share the same memory.

11



Use the fork

1 #include <unistd.h>

2 int main(void) A

3 pid_t pid = fork();

4 if (pid == 0) {

5 /* do stuff in child process x/
6 } else if (pid > 0) {

7 /* do stuff in parent process */
8 } else {

9 /* fork failed */

10 return 1;

11 }

12 return O;

13 3}

Have a look at man 2 fork for further information.
12



pthreads




pthread _create

To execute a function in a new thread, use:

1 int pthread_create(pthread_t *thread,

2 const pthread_attr_t x*xattr,

3 void *(*xstart_routine) (void *),
4 void *arg);

where

e * thread is where the thread's id will be stored
e * attr contains attributes for the thread (pass NULL for default)

e start_routine is the function to execute. Both the single argument and the return
value must be void * .

e arg is passed to the function to be used as an argument

13



code example: threads

© 00 N O G H W N =

e el e e
D O A W N = O

#include <pthread.h>
#include <stdio.h>

void *hello_thread(void *tid) {
printf ("Hello, I am thread %d\n", *(intx*) tid);
pthread_exit (NULL) ;

int main(void) {
pthread_t threads [5];
for (int i=0; i < 5; ++i) {
if (pthread_create (&threads[i], NULL,
hello_thread, (void *) i))
return 1;
}

return O;

14



How threads end

e pthread_exit is called
1 void pthread_exit(void *retval);

e pthread_cancel is called from another thread

1 int pthread_cancel (pthread_t thread);

e exit is called from any thread (ending the process)

15



Waiting for threads

To wait for a thread to finish, there is pthread_join

1 int pthread_join(pthread_t thread, void **retval); The

thread passed to pthread_join must be joinable. The default is joinable, but one can
disable this.

16



code example: joinable threads

int main(void) {
pthread_t threads[5];

1

2

3

4 for (int i=0; i < 5; ++i) {

5 if (pthread_create (&threads[i], NULL,
6 hello_thread, (void *) i))
-
8
9

return 1;

}
10 void *st;
11 for (int i=0; i < 5; ++i) {
12 if (pthread_join(thread[i], &st))
13 return 1;
14 printf ("Thread ’%d finished with %d\n", i, *(int *) st);
15 }

17
16



Mutual Exclusion




IIiHH%Hi%IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

A W N -

Threads can communicate with each other by manipulating global variables or the value behind
the arg pointer we pass to pthread_create .
To avoid race conditions, the pthread library provides mutexes.

int pthread_mutex_destroy (pthread_mutex_t *mutex) ;

int pthread_mutex_init (pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

A mutex is a datatype that can be locked before and unlocked after accessing a variable.

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_unlock (pthread_mutex_t *mutex) ;

18



mutex example

1 struct stuff {

2 unsigned a;

3 unsigned b;

4 }

5 struct stuff global = {1, 2};

6 pthread_mutex_t mutex;

7 //initialize the mutex

8 pthread_mutex_init (&mutex, NULL);
9

A0 Local
10 void *thread(void *tid) {
11 pthread_mutex_lock (mutex) ;
12 global.b = a;
13 pthread_mutex_unlock (mutex) ;
14 pthread_exit (NULL) ;

15 }
19



Deadlocks incoming

1 void *thread_1(void *tid) {

2 pthread_mutex_lock (mutex_1);

3 pthread_mutex_lock (mutex_2);

4 /* do stuff x/

5 pthread_mutex_unlock (mutex_1);
6 pthread_mutex_unlock (mutex_2) ;
7 pthread_exit (NULL) ;

8

9 void *thread_2(void *tid) {

10 pthread_mutex_lock (mutex_2);
11 pthread_mutex_lock (mutex_1);
12 /* do stuff x/

13 pthread_mutex_unlock (mutex_2) ;
14 pthread _mutex_unlock (mutex_1);
15 pthread_exit (NULL) ;

20
16 }



	Function Pointers
	Type Qualifiers
	Parallelism
	pthreads
	Mutual Exclusion

