
Lesson 6

Christian Schwarz, Jakob Krebs

2.12.2019

Contents

File IO and Debugging

Debugging

1

File IO and Debugging

Sources and Solutions

• we publish all code written in this course at https://github.com/jkrbs/c_lessons

• we will publish example solutions of the tasks on same site

• send us questions or your solutions to c-lessons@deutschland.gmbh

2

https://github.com/jkrbs/c_lessons

fopen and fclose

stdio.h provides the following functions to open and close a file:

1 FILE* fopen (char* filename , char* mode);

2 int fclose (FILE* stream);

3

4 // example

5 FILE* test = fopen("test.txt", "w");

6 fclose(test);

Filenames can either be absolute ("/home/foo/bar.txt") or relative ("test.txt").

Relative paths are relative to the ”current working directory”. That is the current directory of

your shell when you execute the program. Shells can usually change this directory using cd

(change directory), and display it using pwd (print working directory).

This is not necessarily the directory that the program executable lies in.

3

file modes

The "w" mode in fopen(filename, mode) specifies that we only want to write to the file.

There are multiple different modes available:

mode access if file exists if file doesn’t exist

r read-only read from start return NULL

w write-only overwrite contents create new

a write-only append create new

r+ read+write read from start, overwrite return NULL

w+ read+write read from start, overwrite create new

a+ read+write read from start, but append at the end create new

4

”File”

• FILE* can be thought of as a pointer to a FILE structure managed by the C standard

library that remembers all the necessary information to interact with the file.

• ”File” should not be taken too literally here. Stream might have been the better term.

For example, stdin and stdout are also FILE* s.

• Streams or ” FILE ”s really just represent an object that bytes can be written to and / or

read from.

5

fread and fwrite

s i z e t f r e a d (vo i d ∗ bu f f e r , s i z e t s i z e , s i z e t count , FILE∗ s t ream) ;

s i z e t f w r i t e (vo i d ∗ bu f f e r , s i z e t s i z e , s i z e t count , FILE∗ s t ream) ;

• fread reads bytes from the stream and writes them into buffer .

• fwrite reads bytes from buffer and writes them out to the stream .

The functions read/write size bytes for up to count times, or until the stream has no more

contents.

They return the number of elements (of size size) successfully read/written.

Sometimes this is useful, e.g. if we want to read up to 20 int s:

s i z e t i n t s r e a d = f r e a d (bu f f e r , s i z e o f (i n t) , 20 , f i l e) ;

But mostly we use them like this:

s i z e t b y t e s r e a d = f r e a d (bu f f e r , 1 , s i z e o f (b u f f e r) , f i l e) ;

6

file io example

1 FILE* logfile = fopen("log.txt", "a+");

2 // very unlikely to fail since "a+" creates nonexistant files

3 assert(logfile != NULL);

4

5 char buffer [1024];

6 do{

7 size_t size = fread(&buffer , 1, sizeof(buffer), logfile);

8 display_log (&buffer , size); // use the data

9 } while(size > 0);

10

11 char* msg = "we accessed the log file\n";

12 size_t size = fwrite(msg , strlen(msg), 1, log);

13 assert(size == 1); // was our data written successfully ?

14

15 fclose(config);
7

Debugging

Debugging

There’s multiple possibilities why a program doesn’t work as intended. As we discussed, the

broad classification is between.

• Compiletime (+ link time) errors

• Runtime errors (also called bugs)

Compiletime errors are easily handable since the compiler shows you where and what they are

Bugs are oftentimes much harder to find because they could be anywhere in your program and

nobody warns you.

8

Different kinds of Bugs

Bugs can appear due to different reasons

• Variable overflow

• Division by zero

• Infinite loops / recursions

• Range excess

• Segmentation fault

• Dereferencing NULL (or other invalid) pointers

• ...

9

The GNU Debugger (gdb)

There are tools helping with bugs, called debuggers. GDB is one of them.

To use it

• You have to install the package gdb

• You have to compile your program with the -g flag

$ gcc −g main . c

• After that you can start your program with gdb:

$ gdb a . out

10

Using gdb

$ gdb −g i n t e r m e d i a t e 0 6 a s c i i d u n g e o n . c

$ gdb a . out

(gdb) s t a r t

Temporary b r e a k p o i n t 1 , main (a r g c =1, a r g v=0 x 7 f f f f f f f e 0 2 8) at . . .

41 p l a y e r = i n i t e n t i t y (5 , 8 , 100 , ’ J ’) ;

(gdb) n e x t

42 monster1 = i n i t e n t i t y (2 , 3 , 100 , ’ ∗ ’) ;

(gdb) s t e p

i n i t e n t i t y (x p o s =2, y p o s =3, h e a l t h =100 , symbol=42 ’∗ ’) a t . . .

104 s t r u c t e n t i t y ∗ new ent = m a l l o c (s i z e o f new ent) ;

(gdb) b a c k t r a c e

#0 i n i t e n t i t y (x p o s =2, y p o s =3, h e a l t h =100 , symbol=42 ’∗ ’) a t . . .

#1 0 x0000555555554938 i n main (a r g c =1, a r g v=0 x 7 f f f f f f f e 0 2 8) at . . .

(gdb)

11

Commands

• If you started gdb without a file you can load it with file file name.

• Use r[un] to execute the program with gdb.

If you have a segfault, it’s a good idea to begin with that. It will give you further

information about the crash location.

• If you want to debug from the beginning use sta[rt] to run and immediately break

• You can set an arbitrary amount of breakpoints with b[reak] line number or b[reak]

function name.

Begin with a breakpoint at the point right before program crashes.

• Print values with p[rint] identifier.

• Use w[atch] identifier to break and print a variable when it’s changed.

12

Once you’re at a breakpoint

• Use n[ext] to execute the next program line only.

• s[tep] executes the next instruction.

• You can jump to the next breakpoint with c[ontinue].

• To see how you have come to this point in the program flow, type backtrace or bt.

This shows you all functions you called to come there.

• By only hitting the return key, you repeat the last entered command.

13

Conditional breakpoints

After setting a breakpoint, GDB assigns an ID to it.

You can use this ID to extend the functionality of that breakpoint.

• con[dition] breakpoint ID expression sets a condition for your Breakpoint:

(gdb) br 42

B r e a k p o i n t 1 at 0 xbada55 : f i l e main . c , l i n e 4 2 .

(gdb) c o n d i t i o n 1 i@=@@=@3

• For string comparison, set the string before comparing with strcmp:

(gdb) br main . c : 4 2

B r e a k p o i n t 13 at 0 x d e a d b e e f : f i l e main . c , l i n e 4 2 .

(gdb) s e t $ s t r i n g t o c o m p a r e = ” l o l w u t ”

(gdb) cond 13 strcmp ($ s t r i n g t o c o m p a r e , c) @=@@=@ 0

• use con[dition] breakpoint ID to remove the condition:

14

gdb –tui Mode

If you want a nicer interface where you can see multiple lines of your program, use

1 gdb --tui a.out

15

useful gdb commands

file load program

r[un] execute program

b[reak] set breakpoint

sta[rt] execute program and break immediately

p[rint] print variable

w[atch] break and print variable when it changes

n[ext] execute next line and break

s[tep] execute next instruction and break

c[ontinue] execute until next breakpoint

backtrace / bt How did I end up here?

16

Task: Bughunting in the Ascii Dungeon

We (or more precisely, the fsr) prepared a little ascii dungeon littered with bugs. You can find

it at.

https://jkrbs.github.io/c_lessons/tasks/intermediate_06_asciidungeon.c

Or just click on Lesson 6 Intermediate Task: Bughunting in the Ascii Dungeon on our

website (https://jkrbs.github.io/c_lessons).

Task: Fix all the bugs in the program using gdb , until you can run around on the Screen using wasd

(+ Enter)!

17

https://jkrbs.github.io/c_lessons/tasks/intermediate_06_asciidungeon.c
https://jkrbs.github.io/c_lessons

	File IO and Debugging
	Debugging

