
Lesson 5

Christian Schwarz, Jakob Krebs

25.11.2019



Contents

Source Code and Solutions

Typedef

data structures

linked list

double linked list

tree

Macros

Libraries and Header Files

1



Source Code and Solutions



Sources and Solutions

• we publish all code written in this course at https://github.com/jkrbs/c_lessons

• we will publish example solutions of the tasks on same site

• send us questions or your solutions to c-lessons@deutschland.gmbh

2

https://github.com/jkrbs/c_lessons


Typedef



typedefs

In previous lessons we said that size_t or bool are not native to the C type system, but

library types built upon it. But how do you define a type?

1 typedef int foo_t;

2

3 // we can now use foo_t just like short:

4 void foo (){

5 foo_t x = 3;

6 short y = 4;

7 foo_t z = x + y;

8 }

Using typedefs we can abstract away plattform differences, shorten long type names (function

pointers) etc. But don’t go out typedef’ing every integer you use :).

3



typedef with structs

In many other programming languages, (including C++ ). We can use structs and enums just

like the predefined types. So why do we have to write struct foo in C , instead of just

foo ?. Well we don’t have to. We can typedef our struct definition to be it’s own type:

typedef struct foo foo; . And we can combine this with the definition:

1 // struct point is the struct name , can be used as normal

2 // the struct and typedef name can also be different

3 typedef struct point{

4 int x, y;

5 }point; // point now means the same as struct point

6

7 point add(point p1, point p2){

8 point sum = {p1.x + p2.x, p1.y + p2.y};

9 return sum;

10 }

4



legacy code with unnamed structs

In old code the struct name is also left out:

1 typedef struct{

2 //point* p; //this wouldn ’t work

3 int x, y;

4 }point;

5 // C++ compilers would complain about a type conflict here

6 // struct point;

This can cause problems in forward declarations and when you want to have pointers to the

struct inside itself, since the typedef isn’t available until the end.

Therefore we don’t do that.

5



data structures



linked lists

head next

value = ...

next

value = ...

next

value = ...

next

value = ...

NULL

value = ...

next

• Now we can build lists of this structures.

• If we want to insert a value at a specific position...

• ... we just have to change the pointers.

• Additionally we can easily iterate through this list.

• But only in one direction.

6



linked lists

head next

value = ...

next

value = ...

next

value = ...

next

value = ...

NULL

value = ...

next

• Now we can build lists of this structures.

• If we want to insert a value at a specific position...

• ... we just have to change the pointers.

• Additionally we can easily iterate through this list.

• But only in one direction.

6



linked lists

head next

value = ...

next

value = ...

next

value = ...

next

value = ...

NULL

value = ...

next

• Now we can build lists of this structures.

• If we want to insert a value at a specific position...

• ... we just have to change the pointers.

• Additionally we can easily iterate through this list.

• But only in one direction.

6



linked lists

head next

value = ...

next

value = ...

next

value = ...

next

value = ...

NULL

value = ...

next

• Now we can build lists of this structures.

• If we want to insert a value at a specific position...

• ... we just have to change the pointers.

• Additionally we can easily iterate through this list.

• But only in one direction.

6



linked lists

head next

value = ...

next

value = ...

next

value = ...

next

value = ...

NULL

value = ...

next

• Now we can build lists of this structures.

• If we want to insert a value at a specific position...

• ... we just have to change the pointers.

• Additionally we can easily iterate through this list.

• But only in one direction.

6



linked lists

head next

value = ...

next

value = ...

next

value = ...

next

value = ...

NULL

value = ...

next

• Now we can build lists of this structures.

• If we want to insert a value at a specific position...

• ... we just have to change the pointers.

• Additionally we can easily iterate through this list.

• But only in one direction.

6



Intermediate Task: Linked List Insertion

No we will try to implement in code what we just saw. You can start out with the code you

can find at

https://jkrbs.github.io/c_lessons/tasks/intermediate_5_linked_list_insertion.c

Or just click on

Lesson 5 Intermediate Task Starting Point: Linked List Insertion

on our website (https://jkrbs.github.io/c_lessons).

Task: Write the function list_insert and test if your code works!

7

https://jkrbs.github.io/c_lessons/tasks/intermediate_5_linked_list_insertion.c
https://jkrbs.github.io/c_lessons


Double-linked lists

head

NULL prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

NULL

value = ...

next

prev

• With a pointer in each direction, we can iterate forwards and backwards.

• When inserting a value we now have to change a little more.

8



Double-linked lists

head

NULL prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

NULL

value = ...

next

prev

• With a pointer in each direction, we can iterate forwards and backwards.

• When inserting a value we now have to change a little more.

8



Double-linked lists

head

NULL prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

NULL

value = ...

next

prev

• With a pointer in each direction, we can iterate forwards and backwards.

• When inserting a value we now have to change a little more.

8



Double-linked lists

head

NULL prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

NULL

value = ...

next

prev

• With a pointer in each direction, we can iterate forwards and backwards.

• When inserting a value we now have to change a little more.

8



Double-linked lists

head

NULL prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

prev

next

value = ...

NULL

value = ...

next

prev

• With a pointer in each direction, we can iterate forwards and backwards.

• When inserting a value we now have to change a little more.

8



Binary trees

root

value
right

left

value
right

left

value
right

left

value
right

left

value
right

left

NULL NULL NULL NULL

NULL NULL

• To improve the performance of certain algorithms

over lists, we can usse binary trees instead.

• Typical such algorithms are lookup, insertion and

removal of elements while maintaining an ordering.

9



Macros



define

We have talked about #include <foo.h> , which copies the content of foo.h into the file.

This is done using the C preprocessor (as indicated by the # ).

Using the preprocessor we can also map macro identifiers to strings. The occurences of the

macro will then be replaced in our code during compilation / preprocessing.

1 #define SIZE 10

2 #define PLAYER_CHAR ’@’

3 #define PI 3.14159265

Everywhere we use SIZE , it will be replaced with 10 by the preprocessor.

10



ifdef

There are many macros provided by our compiler, for example identifying the current os. We

can check for these using another preprocessor feature: #if

1 #ifdef __linux__

2 # include "your_linux_lib.h"

3 int some_linux_only_variable = 5;

4 #elif defined(_WIN32)

5 # include "your_windows_lib.h"

6 #else

7 #error your operating system is not supported

8 #endif

Here we check, if the macros __linux__ or _WIN32 are defined in our file. The blocks

inside the if statements are completely ignored if the condition is false.

11



Libraries and Header Files



header files

When our projects become large, we want to split our code into multiple files. But still our

main file needs to know about all the functions. So we write the signatures into a header file

(extension is .h by convention)

1 //foo.h

2 typedef struct foo{

3 int x;

4 }foo;

5

6 void some_function(foo* s, int x);

We can include this file by writing

1 #include "foo.h"

in our C files, where we want to use those functions.

12



other things in header files

Usually the follwing things are done in header files

• including other headers

• struct forward declarations (if we want to hide the implementation)

• macros and typedefs

But: Headers should only include the headers they really need for the forward declarations.

Headers only used for the implementation should be put in the C file!

13



Intermediate Task: Linked List Library

No we will try to factor out our Linked List into a library. If you haven’t already, the code is

still at.

https://jkrbs.github.io/c_lessons/tasks/intermediate_5_linked_list_insertion.c

Or just click on Lesson 5 Intermediate Task Starting Point: Linked List Insertion

on our website (https://jkrbs.github.io/c_lessons).

The Task:

• Move our code into a little library:

• list.c which contains our implementation

• list.h which forward declares our list interface.

• Add a EMPTY_LIST macro that can be used instead of NULL !

• Try to use the library from main.c ! You can compile both c files at once using

gcc list.c main.c , no need to specify header files.

• Try and see what happens if you include the list.h header twice!

14

https://jkrbs.github.io/c_lessons/tasks/intermediate_5_linked_list_insertion.c
https://jkrbs.github.io/c_lessons


Multiple inclusions

Sometimes with libraries we end up in a situation like this:

1 // matrix.h

2 #include "math.h"

3

4 // vector.h

5 #include "math.h"

6

7 // main.c

8 #include "vector.h"

9 #include "matrix.h"

What will happen during compilation?

• The math header will be included twice.

• This might cause compilation errors if structs are redeclared.

15



Multiple inclusions

Sometimes with libraries we end up in a situation like this:

1 // matrix.h

2 #include "math.h"

3

4 // vector.h

5 #include "math.h"

6

7 // main.c

8 #include "vector.h"

9 #include "matrix.h"

What will happen during compilation?

• The math header will be included twice.

• This might cause compilation errors if structs are redeclared.

15



Include Guards

How can we fix this?

• First We add a macro, indicating that the header has been included.

• Then we check whether that macro has already been defined.

• This concept is called include guards or header guards, and should be used on virtually all

headers

1 // math.h

2

3 // some math definitions ...

16



Include Guards

How can we fix this?

• First We add a macro, indicating that the header has been included.

• Then we check whether that macro has already been defined.

• This concept is called include guards or header guards, and should be used on virtually all

headers

1 // math.h

2 #define MATH_H

3

4 // some math definitions ...

16



Include Guards

How can we fix this?

• First We add a macro, indicating that the header has been included.

• Then we check whether that macro has already been defined.

• This concept is called include guards or header guards, and should be used on virtually all

headers

1 // math.h

2 #ifndef MATH_H

3 #define MATH_H

4

5 // some math definitions ...

6

7 #endif

16



Include Guards

How can we fix this?

• First We add a macro, indicating that the header has been included.

• Then we check whether that macro has already been defined.

• This concept is called include guards or header guards, and should be used on virtually all

headers

1 // math.h

2 #ifndef MATH_H

3 #define MATH_H

4

5 // some math definitions ...

6

7 #endif

16



Pragma once

Alternatively, you can use #pragma once .

This is nonstandard, but supported by all major compilers. For this course, we recommend

using it.

1 // math.h

2 #pragma once

3

4 // some math definitions ...

17



Cyclic include dependencies

Sometimes with libraries we end up in a situation like this:

1 // matrix.h

2 #include "vector.h"

3

4 // vector.h

5 #include "matrix.h"

What is the compiler supposed to do?

• This code will just refuse to compile, since both files expect the other but somebody has

to be looked at first.

• Sometimes you can factor out the shared portion into a third header that both files include

• Sometimes you can just forward declare the one struct that you need from the other

header.

• Remember: Only include the headers that are necessary for the declarations!

Everything else belongs in the C file!

18



Cyclic include dependencies

Sometimes with libraries we end up in a situation like this:

1 // matrix.h

2 #include "vector.h"

3

4 // vector.h

5 #include "matrix.h"

What is the compiler supposed to do?

• This code will just refuse to compile, since both files expect the other but somebody has

to be looked at first.

• Sometimes you can factor out the shared portion into a third header that both files include

• Sometimes you can just forward declare the one struct that you need from the other

header.

• Remember: Only include the headers that are necessary for the declarations!

Everything else belongs in the C file! 18


	Source Code and Solutions
	Typedef
	data structures
	linked list
	double linked list
	tree

	Macros
	Libraries and Header Files

