
Lesson 2

Christian Schwarz, Jakob Krebs

04.11.2019



Contents

Source Code and Solutions

Variables and Types

format strings

printf and scanf

Operators

Control Structures

do . . . while

for loop

Functions

1



Source Code and Solutions



Sources and Solutions

• we publish all code written in this course at https://github.com/jkrbs/c_lessons

• we will publish example solutions of the tasks on same site

• send us questions or your solutions to c-lessons@deutschland.gmbh

2

https://github.com/jkrbs/c_lessons


Variables and Types



Integers

• Keywords: int , short , long , long long

• Stored as a binary number with fixed length

• Can be signed or unsigned (undefined, but can be overridden using signed char and

unsigned char)

• Actual size of int , short , long depends on architecture

• For definite sizes: include stddef.h which adds types like size_t , int32_t , uint64_t

3



Floating Point Numbers

• Keywords: float , double , long double

• Stored as specified in IEEE 754 Standard TL;DR

• Special values for ∞, −∞, NaN

• Useful for fractions and very large numbers

• Type a decimal point instead of a comma!

Example:

1 float x = 0.125; /* Precision: 7 to 8 digits */

2 double y = 111111.111111; /* Precision: 15 to 16 digits */

4



Characters

• Keyword: char

• Can be signed (default) or unsigned

• Size: 1 Byte (8 Bit) on almost every architecture

• Intended to represent a single character

• Stores its ASCII number (e.g. ’A’ ⇒ 65)

You can define a char either by its ASCII number or by its symbol:

1 char a = 65;

2 char b = ’A’; /* use single quotation marks */

5



format strings



format strings

The format string determines how a value is interpreted in the printf function family. Here

are some of the available options:

type description type of argument

%c single character char, int (if <= 255)

%d or %i decimal number char, int

%u unsigned decimal number unsigned char, unsigned int

%X hexadecimal number char, int

%ld long decimal number long

%f floating point number float, double

%s string const char* [more on this later]

6



printf and scanf



printf and scanf

We already know printf allows us to write out data to the console.

scanf does the opposite, and reads in user input from the console:

1 puts("Please insert a number:");

2 int number;

3 scanf("%d", &number ); //reads in a single number

4

5 char c;

6 //reads in a number and a char separated by whitespace

7 scanf("%d %c", &number , &c);

scanf actually returns an int. That is the number of successfully read arguments.

The &number means ”place the read result into the number variable”. Treat it as magic for

now, we will explain it properly later.

7



Operators



Basic Binary Operators

• + , - just behave as expected

• * means multiply, / means divide

• Operator precedence works mostly as expected.

• You can use parenthesess around expressions: (3 + 4) * 7

• = is the assignment operator.

• x = 4; means that future references to x will evaluate to 4

• you cannot assign to arbitrary expressions: (x + 1) = 17 is not legal, since (x + 1) is

not assignable. A compile time error occurs.

• == is the comparison operator. 4 == 4 evaluates to true , x * 0 == 1 evaluates to

false

• % is the modulus operator. Examples: 7 % 3 == 1 , 2 % 2 == 0

8



logical operators and comparisons

• < less than

• <= less or equal than

• > greater than

• >= greater or equal than

• && and

• || or

• ! negation

9



bitwise operations

a b a | b a&b a ∧ b

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 0

5 ^ 3 == 6

0101⊕ 0011 = 0110 ≡ 6

10



Type Conversions

• Explicit type conversion can be performed using the casting syntax:

1 int i = 5;

2 float fi = (float)i;

• When mixing different types in an expression, C will convert the types to match. The rules

applying here are rather complicated, please use explicit casts instead like this:

1 int i = 5;

2 float res = (float)i * 3;

• Be especially wary of mixing signed and unsigned integers!

11



Control Structures



if statements

• basic usage:

1 if(3 > 2){ // arbitrary condition

2 //this gets executed IF the condition evaluates to true

3 }

• short form (use it only for short and simple things):

1 if(3 > 2) bar ();

• else blocks:

1 if(foo ()){

2 }

3 else if(bar ()){

4 }

5 else{

6 }

what we really use here is the shorthand notation on the else block 12



basic while statements

1 int i = 0;

2 while(i < 20){

3 printf("%i\n", i);

4 i++;

5 }

This loop prints the numbers from 0 to 19(inclusive). Before each iteration (even before the

first) the condition is checked. Once the condition is no longer satisfied, it jumps after the loop

block.

13



break and continue in while statements

1 int i = 0;

2 while(true){

3 i++;

4 if(i % 7 == 0) continue; //skip all numbers divisible by 5

5 printf("%i\n", i);

6 if(i == 20) break; //exit the loop once i is 20

7 }

• continue skips the rest of the loop block and begins the next iteration

• break just jumps after the end of the loop block

• Beware: if you have a switch inside a while , break will just exit the switch !

• In fact, break and continue will always be applied to the innermost control structure

that defines them.

14



do...while

The difference between do...while and while is the order of executing the statement(s)

and checking the condition.

The while loop begins with checking, while the do...while loop begins with executing the

statement(s).

1 int i = 3;

2 do {

3 - -i;

4 } while (i < 1);

The

Statement(s) in a do...while loop are executed at least once.

15



for

The For-Loop is comfortable for iterating. It takes three arguments.

• Initialization

• Condition

• Iteration statement

For illustration, consider a program printing the numbers 1 to 10:

1 for (int i = 1; i <= 10; ++i){

2 printf("%d\n", i);

3 }

• i is called an index iterating from the given start to a given end value

• i, j, k are commonly used identifiers for the index

16



switch statements

Switch statements are useful when you have lots of different if cases and know all possible

cases at compile time.

1 switch(command_that_returns_a_status_code ()){

2 case 0: break; // everything is ok

3 // missing break! fallthrough! (or intended ??)

4 case 1: puts("we ran out of disk space");

5 case 17: puts("foo"); break;

6 }

Depending on the result of the function, the switch jumps to the respective case . Every

case must be terminated by a break; statement, otherwise the following case (s) also get

executed. If this is really your intention, which happens very rarely, put a comment like

//fallthrough , since this is a common bug.

17



switch statements 2

1 switch(foo ()){

2 case 0: puts(" :)"); break;

3 case 2: {

4 puts("some logging output");

5 puts("more logging output");

6 }break;

7 default: puts("this should never happen(TM)");

8 }

case bodys can be blocks. Remember that you still need a break after the block though! The

default case gets used if no other once matches. If it is the last case, you may leave out the

break .

18



Functions



Functions

A regular function has a return type, a name, parameters and a body

1 int add(int a, int b){

2 printf("%i + %i = %i\n", a, b, a + b);

3 return a + b;

4 }

printf is also a function but the number of its arguments can vary ( varargs ). we will talk

about this later.

19



Void Functions

• A function can also return nothing, the type of ”nothing” is void .

• void returning functions should not contain return statements

• Functions can call other functions (including themselves, which is called recursion)

• A function with no parameters should have (void) instead of () as it’s parameter

specification, as C will otherwise treat the numer of parameters as undefined

1 void foo(void){

2 puts("I’m a very boring function :(");

3 }

20


	Source Code and Solutions
	Variables and Types
	format strings
	printf and scanf
	Operators
	Control Structures
	do …while
	for loop

	Functions

